PARÁBOLA
La parábola es una curva plana y abierta, que se define como el lugar geométrico de los puntos del plano que equidistan (están a la misma distancia) de un punto fijo F, llamado foco y de una recta fija llamada directriz.
Tiene un eje de simetría en el que se sitúan el foco, el vértice de la parábola y el punto D, de corte del eje con la directriz (que es perpendicular al eje).
DV=VF
La circunferencia focal es, en esta curva cónica la, directriz. Allí estarán los simétricos del FOCO respecto de las tangentes trazadas a la curva.
Puede definirse también la parábola como el lugar geométrico de los centros de las circunferencias que pasando por el foco son tangentes a la directriz.
Al igual que en los casos de la ELIPSE y la HIPÉRBOLA, existe la circunferencia principal, que es aquí de radio infinito y se transforma en la perpendicular al eje por el vértice. Es como en las demás cónicas el lugar geométrico de los pies de las perpendiculares trazadas a las tangentes a la curva desde los focos (lo cuál nos permite hallar el foco a partir de una tangente, la dirección del eje y el vértice por ejemplo).
Aquí tenéis en formato Mongge uno de los ejercicios de Parábolas en el que nos dan tan sólo un punto y el Foco de la curva.
Y otro con el trazado de la tangente a la curva paralela a una dirección dada.
En los botones tenéis los ejercicios de clase resueltos,